Coding Your Javascript Application

Published 2014-10-28 | (Compatible with SDK 2.5,3.5,4.5,5.0,5.1 and 2011,2012,2013,2014 models)

Learn how to create basic Smart TV app using JavaScript, CSS and HTML.

Contents
Example Application
Writing the config.xml file
Writing the index.html file
Writing JavaScript file
Writing a CSS file
Making the Application Respond to the Remote Control

A Smart TV application contains at least the following elements:

index.html file

Serves as the access point of the application.

config.xml file

An XML file in the root of the application structure that holds information about setting up the application.
JavaScript files

Allow a preview of the application and control the behavior of the application.

CSS files

Define the look and feel of the application.

Image files

The images used by the application.

For more information about creating a JavaScript project type application, see JavaScript.

Example Application

The the following example explains the implementation of an application that displays text writtenin CSS and responds to
remote control button events in terms of:

Writing the config.xml file

Writing the index.html file

Writing JavaScript file

Writing a CSS file

Making the Application Respond to the Remote Control

For a full set of example code, see Coding Your JavaScript Application: Sample Code.

The figure below illustrates the file structure and appearance of the application.

Welcome to Samsung widget world!

ElEb CS5
- Lfy] Maincss
EJ[Eb JavaScript
ke @ Main.js
E[Eb Resource

. B image
@ seftings_logo.pna
& config,xml

&%) index, html

Figure. File structure of example application Figure. Example application

Writing the config.xml file

The config.xml file contains information about the application’s execution, updates, operating environment settings and so on.
Depending on the information, the Application Manager controls the version of the application, sets the environment in which
the application is run, and creates and manages user accounts. The config.xml file must be located in the directory in which
the application is installed, and contain the tags listed in the table below.

The config.xml file is called first. The <ver> tag value indicateds whether to update the application. The <Thumblicon> tag

defines the images shown in the thumbnail.

<?xml version="1.0"encoding="UTF-8"?>
<widget>
<Thumblcon>Resource/image/icon/picasa_106.png</Thumblcon>
<BigThumblcon>Resource/image/icon/picasa_115.png</BigThumblcon>
<Listlcon>Resource/imagel/icon/picasa_85.png</Listlcon>
<BigListlcon>Resource/image/icon/picasa_95.png</BigListlcon>
<category></category>
<autoUpdate>n</autoUpdate>
<cpname>MyCP</cpname>
<cpauthjs></cpauthjs>
<login>y</login>
<ver>0.930</ver>
<mgrver>1.000</mgrver>
<fullwidget>y</fullwidget>
<srcctl>y</srcctl>
<ticker>n</ticker>
<childlock>n</childlock>
<audiomute>n</audiomute>
<videomute>n</videomute>
<dcont>y</dcont>
<network>y</network>
<widgetname>HelloWorld</widgetname>
<description>Welcome!</description>
<width>960</width>
<height>540</height>
<author>
<name>Samsung Electronics Co. Ltd.</name>
<email></email>
<link>http://www.sec.co .kr/</link>
<organization>Samsung Electronics Co. Ltd.</organization>
</author>
</widget>

Tag information

Element Description Value
<widget> Indicates that the information is relevant to the application. -
<Thumblcon> An icon image displayed in the Application Manager. File path

Itis used in case of no focus and its size is 106 x 86 pixel.

<BigThumblcon> An icon image displayed in the Application Manager. File path
Itis used in case the focus is placed on an image and its size is 115 x 95 pixel.

<Listlcon> An icon image displayed in the Application Manager. File path
The size is 85 x 70 pixel.

<BigListlcon> An icon image displayed in the Application Manager. File path
The size is 95 x 78 pixel.

<category> The category to distinguish applications. Available items are video, sports, game, lifestyle, information, education. String
<autoUpdate> Decides whether to synchronize with the hub site. For an application that does not need synchronization, select ‘n’. yln
<apptype> Shows information on contents type. Number

11: HTML + Javascript + Flash Player Object
12: Adobe SWF (Ver. Flash Lite 3.1)

13: Adobe SWF (Ver. Flash 10.1)

14: Lua Script

Element

<contents>

<channelType>

<channelRoot>

<channelName>

<channelDisplay>

<previewjs>
<cpname>

<cpauthjs>

<cplogo>

<prelcon>

<login>

<ver>

<mgrver>

<fullwidget>

<srcctl>

<childlock>

<audiomute>

<videomute>

<dcont>

<movie>

Description

File path and name at the initial execution of contents
Only the following application types need contents tag:
12: Adobe SWF (Ver. Flash Lite 3.1)
13: Adobe SWF (Ver. Flash 10.1)
14: Lua Script

Channel-bound Service Type (optional)
Confirms the relations with root-child clarifying root application ID. Optional, only used when the channel-bound

senvice type is child)
When connected to more than one root, roots are distinguished by “:".

Channel information to be executed for channel-bound
senvice (Distinguish each channel using “::’ for example: AAA:BBB::CCC)
(Optional, only used when channel-bound senvice type is the root)

Decides whether the installed channel-bound service is displayed on the first main screen or not. If you want to hide
the service in the first main screen, select ‘'n’.

Deleted
Enter the application provider in this tag.

The name of the JavaScript file that allows you to confirm account information of application providers. This file has to
be written in a defined format.

Deleted
Deleted

Decides whether a senvice is available for login or not. Select 'y, to enter ID and password in the Integrated Sign-in
site of the Application Manager for login. Validity verification should be preceded in JavaScript file corresponding to
<cpauthjs> tag value.

Indicates the application version. The server computer updates the corresponding application depending on the
version information.

Indicates the Application Manager version thatis required to run an application having the config.xml file.

Indicates whether the application is a full-screen or a single-wide one. Display type affects the audio policy of the
application when it's run. See Handling Remote Control Key Events for details.

If'y is selected, the TV source automatically switches from the current TV channel or external input to the internal
media player, and back again when the application is completed. If source conversion is needed, set this tag to y. (ex.
YouTube application).

Determines whether to use the childLock function. This function enables the user to lock an application.

Turns on or mutes the audio. If 'y is selected, TV broadcasting sound is muted when entering the application. Select
'y if the application occupies the full screen, and select ‘n’ if the application occupies a part of the screen.

Turns on or turns off the video. If 'y is selected, TV broadcasting is not displayed on the screen when entering the
application.

Sets the Disable dynamic contrast function.

Dynamic contrastis the function to adjust TV contrast ratio and brighten TV screen by darkening the dark screen and
lightening the light screen. The screen might get lighter or darker when application is on with Dynamic contrast.
Selecting 'y turns off the Dynamic contrast, and selecting ‘n’ turns on the Dynamic contrast. If the application occupies
the full screen, select 'y to remove sparkling. If the application occupies a part of the screen, select‘'n’.

Applications playing video files can cause problems as stated below:

1. Ifavideo file is played on a device connected to the HDMI port, such as a DVD Player, sounds can get mixed, when
executing an application converting sources (for example, YouTube).
2. Sparkling can happen at the entry of the application, due to the difference of frame rate between the TVimage and

video file.

Such problems can be awided by selecting 'y - the HDMI device is stopped, or the frame rate is fixed.

Value

File Path

root | child

Application
ID

String

yln

String
String

String

File path

File path

yln

XXX

X XXX

yln

yln

yln

yIn

yln

yIn

yln

Element Description Value

<widgetname> Enter name of the application. String

<description> Enter a brief description of the application. String

<width> <height> Enter the screen area that the application will occupy. Itis recommended to enter 960 * 540 pixels, the digital TV Number
specification.

<author> Enter the name of the author. string

<network> This tag is used to check the network while operating an application. If the tag value is ‘y and the network testresultis = y|n

‘fail’, entry for the application can be blocked with a message indicating the failure.
Without any set value, defaultis 'y.

<hubsite> This tag is used to check whether the hubsite has been authorized or not while operating an application. If the tag yln
value is 'y, and the hubsite has not been authorized, entry for the application can be blocked with a message
indicating the failure.
Without any set value, defaultis ‘n’.

<pushNotice> Indicates whether the application provides Push Notification Service. yln
Without any set value, defaultis ‘n’.

<pushControl> This tag is reserved for former Push Notification Service. yln
Without any set value, defaultis ‘n’.

<pushUerbinding> Indicates whether Push Notification Service is provided for a specific user. Without any set value, defaultis ‘n’. yln

<flashplayer> This tag is enabled for applications that use embedded Flash player objects, or a stand-alone Flash player. yln

Writing the index.html file
The index.html file is the access point of the application.

A sample HTML code snippet for the index.html file is shown below. It includes the Main.js file under the JavaScript folder and
calls the Main.onLoad() function when the document loaded.
<IDOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello World!!</title>
<script type="text/javascript" src="JavaScript/Main.js"></script>
</head>
<body onload="Main.onLoad();">
<div>
Welcome to Samsung application world!
</div>
</body>
</htm|>

Writing Javascript file

When the HTML document is loaded, the onLoad() function of the Main object is called, as the Main.onLoad() function in the
onload property is registered in the <body> tag.

Create a Main object and add the onload function:
var Main={ // Main object};

Main.onLoad = function () { // called by body's onload event
alert("Main.onLoad()");
Je
* JavaScript code Here!
*/

Once all the above steps are complete, a debug message of Main.onLoad() is displayed. Note that the “Welcome to
Samsung application world!” that was entered does not yet appear on the TV screen. You must use a common module, a
library containing essential functions provided by the Application Manager. Add the following code to <head> of index.html
file for making the common module available for use by JavaScript:

<script type="text/javascript" src="$MANAGER_WIDGET/Common/APl/Widget.js"></script>
Declare the common module as a global variable for the Main.js and call the sendReadyEvent() function. This makes the
Application Manager display an application on the screen:

var Main ={ // Main object};

var widgetAP| = new Common.APIL.Widget(); // Creates Common module

Main.onLoad = function () { // called by body's onload event
alert("Main.onLoad()");
widgetAPl.sendReadyEvent(); // Sends ready message to Application Manager
[
* JavaScript code Here!
*/
}
Run the application. The “Welcome to Samsung application world!” message from the index.html file now appears on the
screen. To change how the application looks, use the CSS.

Writing a CSS file

Add the following string to the <head> field in the index.html file:
<link rel="stylesheet" type="text/css" href="CSS/Main.css"/>
Assign an ID to <div> element in the index.html file.
<div id="welcome">Welcome to Samsung application world!</div>
Create a Main.css file in the CSS folder and enter the code snippet shown in the box below to specify the style of the
welcome element:
body {
margin: 0;
padding: O;
background-color: transparent;

#welcome {
position: absolute;
left: 50px;
top: 50px;
width: 500px;
height: 50px;

background-color: #AFAFAF;
color: #99FFFF;
font-size: 30px;
text-align: center;
}
Making the Application Respond to the Remote Control

Users can change the words your application displays on the screen by pressing any of the five buttons located in the center
of the remote control. A ‘keydown’ event occurs when a button on the remote control is pressed. Add <a> element in the
index.html file and register a function to be executed when that event occurs in the onkeydown property. Place focus on <a>
and press the remote control key - the function registered previously is executed. Add <a> which executes the
Main.keyDown() method when a ‘keydown’ event occurs:

<body onload="Main.onLoad();">
<divid="welcome">
Welcome to Samsung application world!
</div>

</body>
Write a keyDown() method for getting the key code value when pressing the remote control key:
Main.keyDown = function(){ // Key handler
var keyCode = event.keyCode;
alert("Main Key code : " + keyCode);
}
In a function processed by keys such as keydown(), each key has its own key code value. The Application Manager provides
a common module containing key code values to distinguish keys. Add the code shown below to <head> element in the
index.html file for using the TVKeyValue common module:
<script type="text/javascript" src="$MANAGER_WIDGET/Common/APIITVKeyValue.js"></script>
Modify the Main.js file to change the contents of welcome div tag for creating common module objects, classifying keys in the
keydown() method, and defining actions for each key.

var Main ={ // Main object};

var widgetAPl = new Common.APLWidget(); /I Creates Common module
var tvKey = new Common.APL.TVKeyValue();

Main.onLoad = function() { // called by body's onload event
alert("Main.onLoad()");
widgetAPlsendReadyEvent(); /I Sends ready message to Application Manager
document.getElementByld("anchor").focus(); // Sets focus on Anchor for handling key inputs
/l from the remote control

/**
* JavaScript code Here!
*/
}
Main.keyDown = function(){ /I Key handler

var keyCode = event.keyCode;
alert("Main Key code : " + keyCode);

switch (keyCode) {

case tvKey.KEY_LEFT:
alert("left");
document.getElementByld("welcome").innerHTML = "Nice to meet you.";
[
* Code for Left key event!
*/
break;

case tvKey.KEY_RIGHT:
alert("right");
document.getElementByld("welcome").innerHTML =

"I'm so happy.";
break;
case tvKey.KEY_UP:
alert("up");
document.getElementByld("welcome").innerHTML ="l Love you.";
break;
case tvKey.KEY_DOWN:
alert("down");
document.getElementByld("welcome").innerHTML = "Good job.";
break;
case tvKey.KEY_ENTER:
alert("enter");
break;
case tvKey.KEY_RETURN:
break;

}

The value of the welcome div tag changes when the up, down, left, or right button is pressed.

	Coding Your JavaScript Application
	Example Application
	Writing the config.xml file
	Tag information

	Writing the index.html file
	Writing JavaScript file
	Writing a CSS file
	Making the Application Respond to the Remote Control

