
Smart TV SDK IDE Help Guide

Published 2014-10-28 | (Compatible with SDK 5.1 and 2014 models)

This document is the user guide for the Samsung Smart TV SDK IDE, which helps Samsung
Smart TV Application developers better understand and use the IDE.

Contents

Prerequisites

Interfaces description

Tutorial application instructions
Create an AF 2.0 Project
Create and Design Scenes
Operations on Visual Kits

App Framework 2.0 project development
Project Overview
Palette View
Property View
Context Menu
AF 2.0 Toolbar
Outline
Synchronize with Code

Caph project development
Caph sample application
Palette View
Property View
Context Menu
Caph Toolbar
Outline
Image Viewer

Samsung API Content Assist

Run and Debug App
Run and Debug

Embedded Log Viewer

Samsung API Syntax Highlight

Import and Export
Import
Export

Context Help

** This class will not be supported in 2015.

 All functionalities of AppsFramework are more improved, integrating with CAPH. Therefore Appsframework is not
supported since 2015 Smart TV. To use functions of Appsframework, refer to here.

Prerequisites
The required environments are listed as follows :

For the operating system :

For the JDK :

For the Eclipse :

For Run and Debug App :

Interfaces description
The following picture shows the user interface of the SDK IDE visual editor for AF 2.0.

Configuration File

Auto Update
Update Smart TV SDK IDE
Update Emulator

Windows 7 (recommended), Windows XP service pack 2 or higher
Linux (Ubuntu Recommended)
Mac OS X

Oracle JDK 1.6 or above

Eclipse 4.3.2 (Kepler) or newer

Visual Box.
SDK Emulator Image for Virtual Box. This can be downloaded from
http://www.samsungdforum.com/Devtools/SdkArchive.
Chrome browser

Figure 1 : Visual Editor for AF 2.0
The next picture shows the User Interface of the Visual Kit for AF 2.0.

Figure 2 : Visual Kit for AF 2.0
The following figure shows the UI Designer for Caph.

Figure 3 : Caph UI Designer

Tutorial application instructions
This session introduce a sample app to demonstrate the creation processes by using Visual Editor to draw the UI and using
Visual Kit to build the function call relationship.

Create an AF 2.0 Project

This App consists of two scenes, Scene1 and Scene2 with logical relation. Once this App is launched, Scene1 can switch
to Scene2 by pressing the ENTER and Scene2 can turn back to Scene1 by pressing the RETURN.
Scene1 has a container, which contains two pictures: day and night. When the App receives the LEFT or RIGHT key event
from a remote control, the container will switch among these two pictures.

After the Eclipse platform is launched, select the menu item File -> New -> Project -> Samsung Smart TV -> Web App,

and then click Next to start the wizard. Figure 4 : AF 2.0 Project Wizard Page

1.

Select Apps Framework 2.0 -> UI Designer -> Empty Project.
On this page: Type DemoApp in the Project name field. Select '960*540' in the Resolution field.

2.

Create and Design Scenes

Then click Finish button.

In the Project Explorer, expand the DemoApp project Figure 5 : DemoApp project

3.

Open 'Scene1.scene' file with Scene Editor or double click 'Scene1.scene' to open the scene.4.
Now, drag-and-drop or double click the component from Component Lib to create components for your App.

Figure 6 : Create the components

5.

Add two buttons and one image components to Scene1 which is created by default when create an AF 2.0 app project.1.
Drag an image component and two buttons to the scene from Palette View.
Adjust the components' location and other properties, and the scene is shown as below.

Figure 7 : The Scene1

Add a new scene2.
Choose the project tree or layout scene folder, popup the context menu. Choose New -> Samsung Smart TV Apps

Scene to open the New Visual Scene Diagram wizard.
In New Visual Scene Diagram wizard, rename the scene name, and click Finish button to add a new scene.

Figure 8 : New Visual Scene Diagram wizard

Add an image, label and helpbar component for the Scene2 :3.
Drag an image, label and helpbar component to the scene from Palette View.
Adjust the components' location and other property, the scene is shown as below.

Operations on Visual Kits

Figure 9 : The Scene2

Create a Visual Kits. Choose the layout scene folder, popup the context menu. Choose New -> Samsung Smart TV

Apps Kits to create the Visual Kits of the two scenes.

Figure 10 : Create a Visual Kits

1.

Add RETURN key in Scene2 and add Framework function in both scenes. The Framework functions are 'show', 'hide', and
'focus'. Find the Palette and choose the 'Framework' or 'Key Handler' and click 'Framework' or 'Key Handler' block in
scene to add 'Framework' or 'Key Handler'. The image is shown as below.

2.

The generated codes of the two scenes are shown as below.

Figure 11 : Show Visual Kits
Add the response code to 'ENTER' and 'RETURN' key. Add relation to two scenes to switch scene. Find the Palette and
choose the 'Relation' and click on block in a scene and drag to the needed block. For example, in Senen1 add relation
between 'Enter' key and 'Framework' of 'hide', and add relation between 'ENTER' in Scene1 and 'Framework' of 'show',
and 'focus' in Scene2. Do the same operation of 'RETURN' in Scene2. The image is shown as below.

Figure 12 : Add Relations on Visual Kits

3.

SceneScene1.prototype.handleKeyDown = function (keyCode) {
 alert("SceneScene1.handleKeyDown(" + keyCode + ")");
 // TODO : write an key event handler when this scene get focued
 switch (keyCode) {
 case sf.key.ENTER:
 sf.scene.hide('Scene1');
 sf.scene.show('Scene2');
 sf.scene.focus('Scene2');
 break;
 ...
 }
}
SceneScene2.prototype.handleKeyDown = function (keyCode) {
 alert("SceneScene2.handleKeyDown(" + keyCode + ")");
 // TODO : write an key event handler when this scene get focued
 switch (keyCode) {
 case sf.key.RETURN:
 sf.scene.hide('Scene2');
 sf.scene.show('Scene1');
 sf.scene.focus('Scene1');
 break;
 ...
 }
}

Now, the smart TV will switch from the loading scene to the main scene automatically.

Operations on Visual Kit

Create a Visual Kit. Choose a scene in layout scene folder, popup the context menu. Choose New -> Samsung Smart

TV Apps Kit to create the Visual Kit of this scene. Do the same operation to the other scene.

Figure 13 : Create a Visual Kit

1.

Add image path and change the button's text and so on. They can be changed in property view when click the needed
block of component. And add a parameter to the image component and set the other image's path. Add needed
operations to the button and image component. The image is shown as below.

2.

Figure 14 : Visual Kit of Scene1 step 1
Then add Relations between LEFT, RIGHT keys and three components to add response to these two keys in Scene1. And
add Relations between handleShow function and components in Scene2.The image is shown as below.

Figure 15 : Visual Kit of Scene1 step 2
The generated codes : Scene1.

3.

SceneScene1.prototype.handleKeyDown = function (keyCode) {
 alert("SceneScene1.handleKeyDown(" + keyCode + ")");
 // TODO : write an key event handler when this scene get focued
 switch (keyCode) {
 case sf.key.LEFT:
 $('#svecButton_5i7kfg86vl6xg').sfButton('blur');
 $('#svecButton_5i7kfg86toaxf').sfButton('focus');
 $('#svecImage_5i7kfg86dd7xe').sfImage({src:'images/day.png'});
 break;
 case sf.key.RIGHT:
 $('#svecButton_5i7kfg86toaxf').sfButton('blur');
 $('#svecButton_5i7kfg86vl6xg').sfButton('focus');
 $('#svecImage_5i7kfg86dd7xe').sfImage({src:'images/night.png'});
 break;
 case sf.key.UP:
 break;
 case sf.key.DOWN:
 break;
 case sf.key.ENTER:
 sf.scene.hide('Scene1');
 sf.scene.show('Scene2');
 sf.scene.focus('Scene2');
 break;
 default:
 alert("handle default key event, key code(" + keyCode + ")");
 break;
 }
};

Figure 16 : Visual Kit of Scene2
The generated codes : Scene2.

App Framework 2.0 project development

SceneScene2.prototype.handleShow = function (data) {
 alert("SceneScene1.handleKeyDown()");
 $('#svecLabel_5i7kfg7p5soxc').sfLable(text:'Day');
 $('#svecImage_5i7kfg7gho2xa').sfImage({src:'images/day.png'});
 $('#svecLabel_5i7kfg7p5soxc').sfLable(text:'Night');
 $('#svecImage_5i7kfg7gho2xa').sfImage({src:'images/night.png'});
};

Add some logic code that cannot do by VisualKit in Scene1. Do the similar to the scene2. The code is shown as below.
The codes in Scene1 :
SceneScene1.prototype.handleKeyDown = function (keyCode) {
 alert("SceneScene1.handleKeyDown(" + keyCode + ")");
 // TODO : write an key event handler when this scene get focued
 switch (keyCode) {
 case sf.key.LEFT:
 $('#svecButton_5i7kfg86vl6xg').sfButton('blur');
 $('#svecButton_5i7kfg86toaxf').sfButton('focus');
 $('#svecImage_5i7kfg86dd7xe').sfImage({src:'images/day.png'});
 imageIndex = 0;
 break;
 case sf.key.RIGHT:
 $('#svecButton_5i7kfg86toaxf').sfButton('blur');
 $('#svecButton_5i7kfg86vl6xg').sfButton('focus');
 $('#svecImage_5i7kfg86dd7xe').sfImage({src:'images/night.png'});
 imageIndex = 1;
 break;
 case sf.key.UP:
 break;
 case sf.key.DOWN:
 break;
 case sf.key.ENTER:
 sf.scene.hide('Scene1');
 sf.scene.show('Scene2',imageIndex);
 sf.scene.focus('Scene2');
 break;
 default:
 alert("handle default key event, key code(" + keyCode + ")");
 break;
 }
};
The codes in Scene2 :
SceneScene2.prototype.handleShow = function (data) {
 alert("SceneScene1.handleKeyDown()");
 if(data == 0) {
 $('#svecLabel_5i7kfg7p5soxc').sfLable(text:'Day');
 $('#svecImage_5i7kfg7gho2xa').sfImage({src:'images/day.png'});
 } else if(data == 1) {
 $('#svecLabel_5i7kfg7p5soxc').sfLable(text:'Night');
 $('#svecImage_5i7kfg7gho2xa').sfImage({src:'images/night.png'});
 }
};

4.

The App Framework 2.0 is a Samsung provided framework which obeys the operation standards for Samsung Smart TV.
The Smart TV IDE provides a visualization editing tools (such as Visual Editor) to helps developer to achieve a WYSIWYG
(What You See Is What You Get) design. User can drag and drop some components to enrich their application. Currently, it
has lots of integrated components to support WYSIWYG design.

Smart TV IDE also provides a high-level design method for developers, the Visual Kit. The visual kit diagram (*.kit) file shows
the selected scene, components and the relations between them. Each *.kit file is responsible for one Scene. Therefore the
*.kit file uses the same name as the *.scene file. The Visual Kits diagram (*.kits) file is the root for all the Kit files within the
project. The Kits diagram contains all the scenes and their relationship information. By editing the visual kit/kits diagram,
users can build logic relation for their apps.

Project Overview

To create an AF 2.0 app project, user can click File in menu bar, select New -> Other in context menu. Choose the
Samsung Smart TV Apps -> Apps Framework and expand it. Then select the ‘AF 2.0 App Project’ to create it.

Samsung Smart TV AF 2.0 app project is composed of some resource folders, source code files and some configuration
files. When finish creating an AF 2.0 app project, Samsung Smart TV SDK will generate the following resources :

Figure 17 : AF 2.0 app Project Overview
The detailed descriptions of the resources in the AF 2.0 app project are as below :

File (Folder) Description

app The folder contains widget all source code files.

app/htmls The folder contains widget .html source code files.

app/htmls/Scene1.html The file is created by default when create a new AF 2.0 app project.

app/scenes The folder contains widget .js source code files.

app/scenes/Scene1.js The file is created by default when create a new AF 2.0 app project.

app/stylesheets The folder contains widget .css source code files.

app/stylesheets/Scene1.css The file is created by default when create a new AF 2.0 app project..

app/init.js The file includes initialization (onStart) and de-initialization (onDestroy) functions. onStart is entry point of application.

icon The folder contains all icon files of the widget.

images The folder is to store AF 2.0 app project components images.

layout The folder is to store AF 2.0 app project scene file.

layout/Scene1.scene The file is created by default when creating a new AF 2.0 app project to design widget.

Samsung Smart TV IDE also provides three types of template. For each template, there are three themes with different
colors available for users to choose. These templates show the fundamental approaches to develop Smart TV applications
by using App Framework 2.0 such as components, scene manager, and event handlers. If developers want to use the
template, click the Apps Framework 2.0 -> UI Designer -> Template and click Next(Figure 17). In Figure 18, select one
template during the creation process. Otherwise directly click the 'Finish' button to create an empty AF 2.0 app project.

Figure 18 : AF 2.0 Template

layout/Scene1.kit The file is created by users based on a already created *.scene file to build logic relation of scene and components.

layout/scene.kits The file is created by users based on all the *.scene files to build logic relation of scenes.

app.json This file is descriptor for Apps Framework.

config.xml This file is descriptor of Smart TV application.

index.html This is the main page of application. All elements from Apps Framework are added to this file.

widget.info This file is to configuration widget information.

File (Folder) Description

Figure 19 : AF 2.0 Template List

Palette View

Overview Style Description

arrow
button

The arrow button is the most basic component used in every design as we know. It is used to handle all the events that should
happen on the click of a button. The arrow button component that is provided by the Samsung TV SDK can be extended
horizontally and the text property of the arrow button can be modified.

button The button is the most basic component used in every design as we know. It is used to handle all the events that should
happen on the click of a button. The button component that is provided by the Samsung TV SDK can be extended horizontally
and the text property of the button can be modified.

checkbox The checkbox is a component used to typically select options. In Samsung TV SDK, it can be used to select a single option or
multiple options depending on the developer’s requirement. The size of the checkbox cannot be extended horizontally and
vertically.

datepicker Samsung TV SDK provides the date picker component. It makes the task for entering the dates and times in the application
easier.

helpbar Helpbar gives information about the function of each button on the remote control.

hscrollbar This component is typically used when the size of the page exceeds the size of the screen. You can set the size of the bar by
using the size of the entire page, to the size of the screen.

image It is used to place an image in the design. The size of the image can be specified.

input The input component is used to get text input from the user. The component can be added using the Samsung TV SDK. It is
quite different from that of the other components. It has two parts. The text box and the number pad component. The number pad
can be used to type in text into the text box.

label It is used to display text on the screen.

listbox List box is used to manage the data items in the form of a list. You can set the number of items in the list and add an event
handler for each entry in the list.

loading
image

Loading image component can be used when a task is currently loading or getting ready to be displayed on the screen. The
usage of this component is absolutely a developer’s choice and left up to his style of coding. However, good care has to be
taken when the component is used in the right time and only for a specified amount of time. For example, in a video stream
application, this component can be used along with the timer functions in JavaScript only when there are pauses in streaming.

Visual Kit: The Visual Kit and Kits files are design tools aiming to provide an easy way for developers to create their
applications. Once a *.kit or a *.kits file is opened, a palette appears at the right side of the Visual Kit diagram which
contains the major functions of visual kit. By selecting the elements from the palette and inserting it into the active Scene or
Component part in Visual Kit diagram, the program can generate the code automatically into the *.js file. The code
generation scenario will be listed in the Synchronize Section.

Property View

Developers can use the property view to change the property value. The change will be reflected in other places where the
change is used. If modifying the property value in source code, the changes will also be updated in the property view.

Sometimes, the synchronization will be done when user trigger the synchronization action (Sync all: Sync current:) via

toolbar. In addition, if developers change some properties of an item in the property view, the properties will be checked
whether the value is available for that item or not. If the value is not suitable, warning information will be displayed on the top
of the property view, and the previous value of the item will be remained.

Visual Editor :

Component Property

page
indicator

Page indicator component is used to display a series of dots to indicate which page is currently being viewed.

popup Samsung TV SDK provides two types of popup components. They are single button popup and two buttons popup. When a
popup is added to the design editor, the popup does not appear on the Samsung TV SDK.

scrollbar This component is typically used when the size of the page exceeds the size of the screen. You can set the size of the bar by
using the size of the entire page, to the size of the screen.

slider This component is used to allow changing a numeric value by touching and dragging a slide handle.

toggle
button

The toggle button is a component that can toggle between two states.

tooltip The tooltip is a simple popup widget that encloses its content and displays a small arrow associating the content with a node.

video The Samsung TV SDK provides the Video Component to insert Videos into the Design. Often, while designing multi-media
applications, developer would need such components more than the basic components. Hence Samsung TV SDK provides a
very good platform for developing multi-media applications.

Overview Style Description

Overview Style Description

Framework Developer can select Framework from palette and insert it into Scene object in the left diagram. After that, a new element will be
added in the Framework section. The name of the newly added element is depends on App Framework (Ver2.0). Framework
element can only be inserted into Scene object. Adding a Framework element will not cause any source code change.

Function Developer can select Function from palette and insert in into Scene object in the left diagram. After that, a new element will be
created in the Function section. The name of the newly added element is formatted as func + number, for example func8, the
number is the total count of function elements in that Scene object. If the formatted name exists yet, count number will plus one.
In text editor, a piece of JavaScript code who defined a new function with the formatted name will generate.

Key
Handler

Developer can select Key Handler from palette and insert it into Scene object in the left diagram. After that, a new element will
be created in the Key Handler section. The name of newly added element can be found on those keys on TV remote control. In
text editor, a piece of JavaScript code of key handle case will be generated.

Operation Developer can select Operation from palette and insert it into Component object in the left diagram. After that, a new element
will created in the Operation section. The name of newly created element can be found in Component guide. Adding an
Operation element will not cause any source code change.

Relation Developer can select Relation from palette then drag and drop it from element to element. After that, a new line with arrow will
be created between the two elements. At the same time, one line of source code would be generated.

Figure 20 : Component Property

Component Parameter

Figure 21 : Component Parameter
Description: Show the component’s JavaScript parameters. The code is loaded when create the component via Visual
Editor.

Scene Property

Figure 22 : Scene Property

Ruler and Grid

Property Description

Show the component’s ID, if modified, it would be synchronous related to code.

Show the component’s caption, if modified, it would be synchronous related to code.

Show the component’s background image path, if modified, it would be synchronous related to code.

Show the component’s metric, if modified, it would be synchronous related to code.

Show the component’s font, if modified, it would be synchronous related to code.

Property Description

Show the scene’s ID, if modified, it would be synchronous related to code.

Show the scene’s background color, if modified, it would be synchronous related to code.

Show the scene’s background image, if modified, it would be synchronous related to code.

Invisible Components Show the invisible components in diagram, and their numbers.

Figure 23 : Ruler and Grid

Visual Kit :

All the elements in Visual Kit diagram remain their own property view page. The property views are different from each other.
Users can modify the code in *.js file via editing the value in property view. Meanwhile, the code changes in the *.js file also
can be illustrated on the Visual Kit diagram by executing the synchronization for the Kit file.

Scene Property

Figure 24 : Scene Property
Description: The property page for the scene contains only one setting, the scene name. This scene name option uses the
file name as a default setting which cannot be replaced.

Framework Property

Property Description

Show Ruler - Display a ruler along the left and top edges of the diagram and provides access to ruler guides. Guides are added by
clicking anywhere in the ruler and are removed by pressing Delete when active.

Show Grid - Display the grids and used for alignment.

Grid in Front - Show the grid in front of the visual component.

Ruler Units - Set the units of the ruler.

Grid Spacing - Set the space of the grid.

Color - Set the color of the grid line.

Style - Set the style of the grid line.

Snap To Shape - This is a useful feature for alignment. A “laser line” will be appeared at the edges or the center of the node which
assist users to arrange the components in the canvas.

Snap To Grid - This is another useful feature for alignment. This feature achieve an automatic snapping function when users move
one component close to another one.

Restore Defaults - Reload the settings of the ruler and grid tab.

Figure 25 : Framework Property
Description: The value of the framework is selectable from a combo box. There are six choices available in the framework
property: 'show', 'hide', 'focus', 'getFocused', 'getVisible', 'getState'.

Function Property

Figure 26 : Function Property
Description: There are two types of function. One type of function is generated initially by the system which cannot be deleted
or renamed from the Visual Kit diagram. There are 'initialize', 'handleShow', 'handleHide', 'handleFocus' and 'handleBlur'. The
property view shows the function name and the full name in *.js file. The other functions created by users are using the same
property view. The only difference is the user created functions are supporting rename action.

Key handler Property

Figure 27 : Key handler Property
Description: Each Key Handler element represents a button in a remote controller. Therefore the number and the name of the
Key Handler element are structured in the Visual Kit editor. There are 39 options available including 5 initially created for
users to implement the Key Handler elements. All the options of the key name are listed in a combo box in property page.
The full name of the key in *.js file is also shown in property page.

Component Property

Figure 28 : Component Property
Description: The component property page presents two pieces of information. The first one is the id code of the component
which obeys the information from Scene file and is generated by the system. The second one is the type of the component
which is defined during the creation process. Both of these two settings cannot be modified.

Parameter Property

Figure 29 : Parameter Property
Description: Majority of the components have the parameter option. It shows the default property and value of current both of
Property and Value can't modified by users. Figure Parameter Property shows the property view of a Button component and
its default value is 'button_text'.

Operation Property

Figure 30 : Operation Property
Description: Most of the components provided by the system lib have operation elements. The Operation option describes
the basic actions of the component that can be activated in the application. Each type of component has its own behaviors
established in the system lib. Therefore the operation's value only can be picked and only one time picked from a particular
combo box.

Relation Property

Figure 31 : Relation Property
Description: The relation items also contain their own property view. There are two tabs in relation property; They are
"Property" and "Parameters". The content in tab ‘Property’ view shows two elements. The first one is the ‘Source Name’ and
the second one is the ‘Target Name’. Both of them can’t be modified. Relation tab "Parameters" shows the "Name" and
"Value" of Relation parameter. The "Value" can be modified by users.

Figure 32 : Relation Parameters
On the top right of the Parameters view are three toolbars, "Add", "Delete", and "Insert". They can be also trigger by right
click. When click "Add", a dialog will popup. When add parameter to the relation which target is Parameter, the dialog is as
shown below. User can add "Name" by itself or click the comb box to select a suggested item. When relation target is
Function, Framework or Option, the "Name" is fixed and user can only input Value. The "Insert" is the same as "Add"
operation except that user must select an existed property line to trigger it. Select an exist property and click "Delete" to
delete the selected property.

Figure 33 : Relation Add Parameters (Relation to Parameter)

Figure 34 : Relation Add Parameters (Relation to Function, Framework, Operation)

Context Menu

Visual Editor : The Context Menu is a popup menu when user right clicks on the Visual Editor. This menu provides some
common used functions of the Visual Editor.

The screen shot of the context menu is shown below :

Figure 35 : VE Context Menu
The details of Context Menu are listed as follows :

Menu Name Description

File It contains the following submenu:

There are two operations available here.

Edit It contains the following submenu:

It provides cut, copy and paste operations for selected components.

The Save As Image File... operation can save the current scene’s appearance as an image file.
The Print... operation allows user to print a picture of the current scene’s appearance.

Cut can cut the selected components from current scene.
Copy can copy the selected components from current scene.
Paste can paste the components which are copied or cut.

View This operation is only provided for Visual Scene. It contains the following submenu:

Delete from Model This operation will appear when component is selected in Visual Scene.

By clicking it, the selected component will be deleted.

Show Properties
View

This operation makes Property View to be active.

Preview Scene Preview the current scene in the Emulator.

Format The hierarchy of its menu is showed as follows:

It provides functions to change the relative z-order of the selected components.

Locate in JS File This operation will open the related JavaScript file and locate the selected component in JavaScript file.

Locate in CSS File This operation will open the related CSS file and locate the selected component in CSS file.

Locate in HTML File This operation will open the related HTML file and locate the selected component in HTML file.

Locate in All Files This operation will open the related JavaScript, CSS and HTML files and locate the selected component in these files.

Menu Name Description

Grid please refers to Property View
Rulers please refer to Property View.

Page Breaks can make a page break on the scene.
Recalculate Page Breaks can recalculate page breaks.
Snap to Grid please refer to Property View.

Bring component to the front
Send component to the back
Bring component to the forward
Send component to the backward

Visual Kit : The Context Menu is a popup menu when user right clicks on the Visual Kit diagram. This menu provides some
common used functions of the Visual Kit. Depend on the requirement for each elements, the content of the context menu is
different.

Figure 36 : VK Context Menu

AF 2.0 Toolbar

The toolbar provides a convenient way to do some actions such as debug, package, sync with code, sync with all codes,
change resolution, zoom in/out and so on.

The details of toolbar are as follows :

Sync with code Synchronize the Visual Scene file with the code from JavaScript, CSS and HTML files. For more details, please refer to :

Synchronize with Code.

Menu Name Description

Menu Name Description

Locate in JS File This operation will open the related JavaScript file.

Sync with code Synchronize the Visual Scene file with the code from JavaScript, CSS and HTML files. For more details, please refer to:
Synchronize.

Show Properties
View

This operation opens the Property View page.

Icon Command Name Description

Samsung Tools Execute the Run PNaCl App in Chrome command if click on the tool icon, or open a drop-down menu if click on the
triangular arrow.

Run PNaCl App in
Chrome

Pop-up a dialog, developers can start the PNaCl Server and run the PNaCl App with Chrome browser from this dialog.

TV Log On/Off Turn on/off the TV log.

Debug App Debug a selected product into Samsung Smart TV Emulator. See Run and Debug for more.

Run App Run a selected product into Samsung Smart TV Emulator. See Run and Debug for more.

Sync with code Synchronize the current scene’s JavaScript/HTML/CSS codes.

Sync all with code Synchronize current project’s all scenes’s JavaScript/HTML/CSS codes.

 Zoom In/Out Provides zoom in/out operations. The following selections are available:

Outline

The Outline provides a convenient way to do some actions such as list all components in current scene/kit (including special
components), select component, preview scene, thumbnail current scene and so on.

The detailed functions of the Outline are as below.

Visual Editor

Visual Kit

Synchronize with Code

Visual Editor and Visual Kit Synchronize with code function provide a convenient way to reflect code modification to Visual
Scene/Kit/Kits. Now, our SDK gives the follow ways to do synchronize :

Here gives an example of adding a button from code.

 Change Resolution Provides change project’s resolution operations. The following resolutions are provided

Icon Command Name Description

Outline Description

This overview option shows a thumbnail of the current active kit.

If the display scale of the current active kit is high, users can move the display interface by clicked or dragged the
viewing zone from one place to another in the overview.

The outline view shows the structure of current active scene using tree model, and provides the following operations:

right click the root node, it shows Preview Scene operations1.

click sub node, the component will be selected in current scene, all the opened related codes will be highlight in

JavaScript, CSS and HTML editors, and the Properties view will be changed to the component, too.

2.

Outline Description

This overview option shows a thumbnail of the current active kit.

If the display scale of the current active kit is high, users can move the display interface by clicked or dragged the viewing
zone from one place to another in the overview.

The outline view shows the structure of current actived scene using tree model, and provides the following operations:

click sub node, the component will be selected in current kit, all the opened related codes will be highlight in JavaScript,
CSS and HTML editors, and the Properties view will be changed to the component, too.

Through AF 2.0 Toolbar
Through project resource and layout folder resource
Through scene file’s context menu

Add components’ js codes in *.js file.
$('#svecButton_5i4dgcah6mqf').sfButton({
 text: 'button_text'
});

1.

components’ css codes in *.css file2.

Caph project development
Caph sample application

This session introduce a sample app to demonstrate the creation processes by using Caph UI Designer to design an app.

This App has one page named page1. Page1 have two Buttons and a ImageGallery component which contains some
pictures. When the App receives the LEFT or RIGHT key event from a remote control, the focus will be changed between
two buttons. When focus is on one button and then press ENTER, the ImageGallery will switch pictures.

#SceneScene1 #svecButton_5i4dgcah6mqf {
 position: absolute;
 left: 410px;
 top: 150px;
 width: 121px;
}

Add components’ html codes in *.html file.
<div id="svecButton_5i4dgcah6mqf"></div>

When finishing synchronization, a new button component will be created on the scene.

Figure 37 : Synchronize result

3.

Creating the Project
After the Eclipse platform is launched, select the menu item File -> New -> Project -> Samsung Smart TV. Select Web
App and then click Next to start the wizard.

Figure 38 : Smart TV Web App Project Wizard
On this page

1.

Select Caph(Web UI Framework) -> UI Designer -> Empty Project.

Then click Finish button.

Select 960x540 in the Resolution field.
Type 'basic' in the Project name field.

Design a page
In the Project Explorer, open page1.page file, and the UI Designer will show up.

2.

Drag two Buttons and one ImageGallery into the diagram, and then modify the properties of ImageGallery.

Figure 39 : Design a page (step 1)
Modify the Text properties of the two Buttons to "Previous" and "Next".

Figure 40 : Design a page (step 2)
Drag an Image into each cell of ImageGallery, and set the URL for each Image.

Figure 41 : Design a page (step 3)
Select the "Previous" Button and switch to the Events tab. Choose the "click" event type in the drop down list.

Figure 42 : Design a page (step 4)
Click the right arrow button, it will jump to page1.js file, and highlight the event handling code block. Add the click
event handling function in order to change current Image when click the "Previous" Button. And follow the above-
mentioned operation for "Next" Button.

Figure 43 : Design a page (step 5)

Run the app.
Choose this 'basic' project in Project Explorer, popup the context menu, select the menu item Run As -> Samsung

Smart TV Emulator.

Figure 44 : Run the app (step 1)
By pressing LEFT or RIGHT key on the remote control, user will see button's focus are changed between 'Previous' and
'Next' button. By pressing ENTER key on the remote control, user will see the image changed.

3.

Palette View

Caph Components Palette View provides the following palette for creating Samsung Smart TV applications.

Property View

General properties of components are as follows.

Figure 45 : Run the app (step 2)

Overview Style Description

Box Box represents a widget with a rectangular region. It is a subclass of View.

Button Button represents a widget, which provides the user a simple way to trigger event.

ColorTag ColorTag represents a manager for color tag. It mainly is for indicating the depth of UI, this widget can manage some
of the tags, the tag is located in the upper left corner of the screen. Each tag has its own name, size and color, these
tags were rendered in the stacked way.

DomContainer DomContainer Represents a rectangle container that could only append Dom element in it.

GridWidget GridWidget represents a container of a set of widgets; the container can display some widgets in a two-dimensional.

Image Image represents a container of image resources. Image resources can be added or changed.

ImageGallery ImageGallery represents a container of a set of widgets, the container can display some widgets in two-dimensional
and three-dimensional, the container layout can be set vertical or horizontal or rectangular, the animation of this widget
can be 3D or 2D.

InputBox InputBox represents a widget with basic text field, it can be used as a direct replacement for traditional text inputs.

Label Label represents a container which can display text. A user can change text and the size of widget.

ListWidget ListWidget represents a container of a set of widgets; other widget can be rendered on the ListWidget. A user can
create linear structure widget easily by using it.

Navigator Navigator represents a container of a set of widgets. It can add sets of strings and images. It will convert each set of
string and image to a label and image widget.

Panel Panel represents a container that consists of image part and text part, the image part is always on top of the text part.

Spinner Spinner represents a widget with a number in the center text area.

Strip Strip represents a container of a set of widgets. It can add a set of Strings, and each string will be converted to a tag.

Property Description

In events tab of property view, the events of the current selected widget will be listed. The developer can select an event in
event list, and then click right arrow button. The selected event will be added in JavaScript file.

 Figure 46 : Events properties

User can also set the properties for the Caph UI Designer.

- Show the component's ID

- Show/set the component's class

Show/set the component's top-left position, width and height.

Show/set the component's specification properties. Different components have different
properties.

Property Description

Property Description

Display the grids and used for alignment.

Display a ruler along the left and top edges of the diagram and provides access to ruler guides. Guides are added
by clicking anywhere in the ruler and are removed by pressing Delete when active.

This is another useful feature for alignment. This feature achieve an automatic snapping function when users move
one component close to another one.

This is a useful feature for alignment. A "laser line" will be appeared at the edges or the center of the node which
assist users to arrange the components in the canvas.

Set the space of the grid.

Set the color of the diagram.

Context Menu

The Context Menu is a popup menu when user right clicks on the Caph UI Designer.

The screenshot of the context menu is shown below.

Figure 47 : Context menu
The details of Context Menu are listed as below.

Reload the default settings.

Property Description

Menu Name Description

Undo Delete/Move
Node

It contains the following choice :

Undo Delete :

Undo Move Node :

There are two operations available here.

Redo Delete/Move
Node

It contains following choice :

Redo Delete :

Redo Move Node :

It provides redo operations for modified components.

Delete This operation is only provided for existed Caph components.

It deletes all the selected Caph components :

By clicking it, the selected component will be deleted.

The 'Undo Delete' operation can redisplay those Caph components that are previously deleted.1.

The 'Undo Move Node' operation allows user to move Caph component back to the place it has been before.2.

'Redo Delete' can restore delete operation.1.

'Redo Move Node' can move those Caph components to the place again after you cancel the operation.2.

Caph Toolbar

The Toolbar provides a convenient way to do some actions such as delete, redo, undo, zoom in/out and so on.

The toolbar display on the top of Caph UI Designer, and normally is as follows.

Figure 48 : Toolbar
When two or more components are selected, the toolbar will be changed to the following figure.

Align This operation is only provided for multiple caph components.

It contains the following submenu :

It provides several ways of alignment operations for selected components.

ZOrder This operation is only provided for multiple Caph components.

It contains the following submenu :

It provides several ways of ordering operations for selected components.

Menu Name Description

'left/center/right' can align the selected components horizontally.1.

'top/middle/bottom' can align the selected components vertically.2.

'size/width/height' can align the selected components according to the minimal width or height or size (including width and

height).

3.

'Bring To Front' can bring selected components before all the other components and cover them.1.

'Bring Forward' can bring selected components before all the other components.2.

'Send To Back' can bring selected components after all the other components and be covered.3.

'Send Backward' can bring selected components after all the other components.4.

Figure 49 : Toolbar with alignment
The details of Toolbar items are as below.

Outline

The detailed functions of the Outline are as below.

Image Viewer

The Image Viewer provides a convenient way to preview all the image resources by automatically scanning the whole project.

Open the Image Viewer by Window -> Show View -> Other ->Samsung Smart TV SDK -> Image Viewer.

Icon Command
Name

Description

Undo When one component is operated, like move, cut, delete, the undo command will help return to previous
status.

Redo When one component is operated, like move, cut, delete, and the undo operation is executed, then redo
will do previous operation again.

Delete When one or more component is selected, delete operation will removed them from Caph UI Designer.

Cut When cut one component, it will disappear in Visual Editor, the component's information is stored in
memory and you can paste it later.

Copy When copy one component, the component's information is stored in memory and you can paste it later.

Paste When one component is cut or copied, the component's information is stored in memory and you can
paste it in the Visual Editor.

Zoom In Provides zoom in operations.

Zoom Out Provides zoom out operations.

Alignment Provides alignment operations: Align Left, Align Right, Align Top, Align Bottom, Align Middle, Match Size,
Match Width and Match Height.

Outline Description

This overview option shows a thumbnail of the current active scene,if the display scale of the current activated scene is high,
users can move the display interface by clicked or dragged the viewing zone from one place to another in the overview.

The outline view shows the structure of current activated scene using tree model, and provides the following operations :
1) right click the root node, it shows "Delete" operation
2) If node is operated in Caph UI Designer, then right-click node, the component will be show undo/redo operations.

Figure 50 : Image Viewer menu
Also we can preview the image resources by using the image component.

Drag an image component to the blank area and select the image component.

Figure 51 : Using Image component

1.

Double click the image resources that you want to preview listed in the Image Viewer.2.

Samsung API Content Assist
Samsung API Content Assist, which has been integrated into Samsung Smart TV SDK JavaScript Editor, provides
context sensitive Samsung Device API content completion upon user request when developing Samsung Smart TV apps.
Popup windows are used to propose suggestions for developers to choose from to complete a phrase.

Open a JavaScript file with Samsung Smart TV SDK JavaScript Editor, and then the code completion feature can be
triggered by entering the objects defined in Samsung device API and call Content Assist (Alt + /, by default, or “.”).

Figure 52 : Using Image Viewer
Slide the scroll bar to resize the size of image resources listed in the Image Viewer.

Figure 53 : Slider

3.

Figure 54 : Content Assist of Samsung API Object

Run and Debug App
Samsung Smart TV SDK not only support launching the apps into Emulator for functionality test, but also provides debugging
function to developer. Samsung Smart TV SDK uses Web Inspector as its debugging tool which allows developers to view
the page source, network status, script debugging, profiling and more.

After the preparation of the developing tools and installing the SDK Emulator Image into Visual Box, user should check the
Visual Box setting and choose one Emulator for testing. Open the Samsung Smart TV Emulator preference page by
Window -> Preferences -> Samsung Smart TV -> Emulator.

The developer's previous input will be parsed, and certain related proposals will be presented in a popup window right
after the "." character.

1.

The proposals will be listed alphabetically for searching convenience.2.
Developer can select an appropriate proposal from the popup window using the up and down key, and apply the selected
one by pressing "Entry" key.

3.

Figure 55 : Emulator Preference Page
User can modify the Preferences to change some properties of the Emulator. If required to change the port of Virtual Box
Web Server, user can edit the Virtual Box Web Server URL property. For example, changing the value to
"http://localhost:9999", the Virtual Box Web Server will use the 9999 port rather than the default value 18083.

Run and Debug

Developers have two ways to run or debug their apps :

Select one app project, and then click the Run or Debug button in toolbar.

Figure 56 : Run or Debug from Toolbar

1.

Select one app project, right click it and within the pop-up project menu, find the Run As or Debug As button.2.

Figure 57 : Run or Debug from Popup Menu
Google Chrome is a prerequisite for debugging apps, because the Web Inspector is integrated into it. Once executing the
debugging function, the Web Inspector will wait until Emulator launching finished. If the emulator runs correct, the web
inspector will be started soon. Developer can use it to debug JavaScript code, view page source and more.

Figure 58 : Web Inspector
Except the two methods above, right click on one scene and select Preview Scene can also run the current scene. By the
way, the Preview mode is only for preview and all the remote control events are inactive.

Embedded Log Viewer
Embedded Log Viewer is a viewer in Samsung Smart TV SDK that can see log message which is delivered from the
Emulator. When emulator is launched and connected to IDE, the log viewer will be shown the IDE editor.

Developers can open Log Viewer by the path Window -> Show View -> Console as shown in the below image.

Figure 60 : Menu path
When developers launch an App in emulator and Emulator responses to the IDE, the log message will be shown in the
embedded console view. There are some features about console view.

Hyperlink can be shown if do as follow steps :

Figure 59 : Preview Scene

Edit js file (such as Scene1.js in basic project). Add alert message in the js file (see red rectangle). The alert message
needs to follow these rules :

1.

Start with "file://";
Then follows an absolute file path, such as "D:/dev/runtime-New_configuration/basic/app/init.js";
The file specified by the absolute path must exist in current project.

Run current project in Samsung Smart TV emulator.2.

Figure 61 : Samsung Smart TV Emulator Log View
If the hyperlink pointed file is in the current project and the file’s absolute path is correct, this hyperlink is clickable, and the
relevant file can be displayed.

The log viewer also contains a filter function to process the message contents from Emulator. The filter buttons is shown in
the console view with four levels to choose :

Figure 62 : SLog View - four levels

Figure 63 : Filter log messages by keyword
The log message received from Emulator can also be logged into a local file, "{user.home}/Samsung/Logs/emulator.log",
automatically when the checkbox Save emulator logs is selected. The default value of the Save emulator logs is
unselected which can be changed from Window -> Preferences -> Samsung Smart TV -> Emulator.

All: show all log messages responded from emulator.
Alert: show alert messages which starts with "[JS ALERT]".
Error: show error messages.
Keyword: allow user to type in a keyword and show the log messages which contains the keyword.

Samsung API Syntax Highlight
With Samsung API Syntax Highlight integrated in the Samsung Smart TV SDK JavaScript Editor, the Samsung API
keywords can easily be distinguished from others. There are three kinds of Samsung API keywords defined in Samsung
Device API, and each keyword type is highlighted differently.

Figure 64 : Log saving
The user can also change the emulator log path by clicking 'Browser...' when the checkbox “Save emulator logs” is
selected.

Samsung Application Interface.
Samsung Methods.
Samsung Parameter Variables.
By default, the colors for Samsung API keywords are as follows :

Keyword Type Color Settings

Samsung Application Interface RGB (0, 128, 255)

Samsung Methods RGB (255, 100, 100)

Samsung Parameter Variables RGB (63, 63, 191)

Import and Export
With Import and Export integrated in the Samsung Smart TV SDK, Smart TV apps projects can be easily imported into

Figure 65 : Default Samsung API Keywords Colors
To customize the highlighting styles of the Samsung API keywords for the code, refer to the following steps :

Figure 66 : Samsung API keywords Preference Page

Click Window -> Preferences (Eclipse -> Preferences, in Mac OS X).
Select Samsung Smart TV -> Syntax Coloring and it shows the current highlighting style of each Samsung API
keyword type.
Click the colored button on the right side, and select the color that you want the text of the keyword to appear in, and
click OK or Apply to save your changes.
Or click Restore Defaults if you want to restore the color settings of Samsung API keywords to their default values,
and then click OK or Apply to save your changes.

your workspace and exported in compressed files for distribution and running or debugging on real Samsung Smart TVs.

Import

To import Samsung Smart TV apps projects, refer to the following steps :

There are two options for Samsung Smart TV apps projects importation : Samsung Smart TV Native Apps Project for
PNaCl apps and Samsung Smart TV Web Apps Project for AF 2.0 app and JavaScript apps.

Figure 67 : Import Samsung Smart TV Apps Projects

Export

To export Samsung Smart TV apps projects, refer to the following steps :

Click Window -> Preferences (Eclipse -> Preferences, in Mac OS X) and select Samsung Smart TV -> Packaging. The
Registered Area List on the right side lists all the target distribution areas of your Smart TV apps, which can be newly
added, deleted or modified through the commands on the side. And the Package file output folder specifies the
destination where the packaged apps would be.

Click File -> Import.
In the Import dialog, select Samsung Smart TV Apps folder.

Before exporting projects, certain Packaging settings should be configured.1.

Figure 68 : App Packaging Settings
If you want to run your apps on real Samsung Smart TV, User App Sync Server should be configured. (Optional)
Click Window -> Preferences (Eclipse -> Preferences, in Mac OS X) and select Samsung Smart TV -> User App

Sync Server. Then, set the IP address and resource path of the server.

Figure 69 : Server Settings

2.

Click File -> Export, and select Samsung Smart TV Apps -> Package file in Export dialog.3.

Figure 70 : Export Samsung Smart TV Apps Projects
Configure essential packaging information, such as app version, distribution area and available languages, in ZIP Export

dialog. Your app on the server would be updated if the checkbox Update the packaged files on the server is checked.
4.

Context Help
Context Help function is the Eclipse self-contained function which is also implemented in Samsung Smart TV IDE. By
selecting one of the UI components and pressing the F1 button, a new Help View will be opened with a paragraph of
description and some hyperlinks to the relevant articles. Within the Smart TV IDE, several views such as Visual Scene/Kit
Editor, Properties and Outline view, integrate this context help function.

Figure 72 : Context Help about Visual Scene

Configuration File
With the help of Samsung Smart TV SDK XML Editor, user can edit certain fields such as resolution, app name, and icon
preview with great convenience.

Figure 71 : Configure essential packaging information

Auto Update
Auto Update includes updating Smart TV SDK IDE and emulator on line.

Update Smart TV SDK IDE

Developers can update/install IDE as follow :

Help -> Install New Software... -> type or select a site (see red rectangle). (or Help -> Check for Updates, if the update

site URL has been already added to 'Available Software Sites')).

Select \config.xml file, and then right click the selected xml file and select 'Open With' Samsung Smart TV SDK XML

Editor in the context menu.
1.

Navigate to the configuration page in the first tab, and editing certain fields.

Figure 73 : Visual Editing of Config.xml

2.

Figure 74 : Type or select a site
Before updating SDK plug-in on line, the Eclipse 4.3 (Kepler) should be installed.

Currently, the official update site URL is: http://d3f5cmlctbt8h4.cloudfront.net/Public/smart_tv_sdk/releases/ide/

Update Emulator

Developers can update emulator as follow :

Figure 75 : Select your emulator name
When developer opens the preference page for the first time since updating/installing IDE, the emulator machine name
setting is nothing but a watermark "Please select your Smart TV Emulator". Some emulator names will be listed in drop down
table if emulators were installed in Virtual Box.

After select 'Update Samsung SmartTV Emulator...', the 'Download Manager' dialog will be shown. Available emulators will
be listed in the dialog. In 'Download Manager' dialog, the upgradable emulator names will be listed. Initially, the listed
emulators are unselected and the 'Download' button is disabled.

Figure 76 : Download Manager
The developer can only select one at the same time. If an emulator is selected, the release note according with the selection
will be also shown in this dialog, and the 'Download' button will be enabled. The developer can click to download the selected
emulator.

Window -> Preferences -> Samsung Smart TV -> Emulator -> Please select your emulator name1.
Help -> Update Samsung SmartTV Emulator...2.

	Smart TV SDK IDE Help Guide
	Prerequisites
	Interfaces description
	Tutorial application instructions
	Create an AF 2.0 Project
	Create and Design Scenes
	Operations on Visual Kits
	Operations on Visual Kit

	App Framework 2.0 project development
	Project Overview
	Palette View
	Property View
	Visual Editor :
	Visual Kit :

	Context Menu
	AF 2.0 Toolbar
	Outline
	Visual Editor
	Visual Kit

	Synchronize with Code

	Caph project development
	Caph sample application
	Palette View
	Property View
	Context Menu
	Caph Toolbar
	Outline
	Image Viewer

	Samsung API Content Assist
	Run and Debug App
	Run and Debug

	Embedded Log Viewer
	Samsung API Syntax Highlight
	Import and Export
	Import
	Export

	Context Help
	Configuration File
	Auto Update
	Update Smart TV SDK IDE
	Update Emulator

