
Audio in PNaCl application

Published 2014-10-27 | (Compatible with SDK 4.5,5.0,5.1 and 2013,2014 models)

This document shows how to use PNaCl Audio interface in SmartTV application

Contents

This tutorial provides information on how to create a PNaCl application that uses pp::Audio and pp::URLLoader
resources. The application can be tested with Samsung Smart TV Emulator 4.5 or directly on Samsung Smart TV with Native
Client. You can also test it in the Google Chrome browser.

Prerequisites
To create a PNaCl application you’ll need NaCl SDK and a text editor. Basic tutorial on creating PNaCl applications can be
found in How to create sample PNaCl application.

To run the application this tutorial describes, please download the tutorial application source code and extract it into the

Samsung SmartTV SDK application folder.

You will also need an audio device (i.e. headphones or speaker) and a .wav file.

Introduction
The pp::Audio interface in PNaCl enables usage of sounds in your applications.

There are 3 possible audio sources:

All 3 types of sources can be joined to create more complex sounds.

This tutorial shows how to create a PNaCl application that reads data from a WAVE file and plays it on an audio output
device, so that user can hear it. Also application manages mixing and playing simultaneously sounds from different files.

Interfaces description
Reading from file and playing sounds are both not trivial operations. They both require more than one type of resource.
Therefore, we will describe them briefly.

Prerequisites

Introduction

Interfaces description
The pp::Audio interface
The pp::URLLoader interface

Using tutorial application
Problems with loading files

Creating your own application
Loading files
Playing sounds

an audio file (for example in WAVE format)
a sound generated inside of application (i.e. sine wave)
a sound recorded into the memory by another part of application

https://dr1stk14alc8x.cloudfront.net/_downloads/d24_pnacl_audio.zip

The pp::Audio interface

The pp::Audio provides a low-level audio stream handling. When resource is created, it gets PPB_Audio_Callback
callback function, that gets called every time browser needs more data to play. Playback can be stopped or started.

More information here: coding Audio.

The pp::URLLoader interface

When running PNaCl module, it does not have access to file system. If you need any additional assets (such as files) from
specific location, you have to use pp::URLLoader interface.

More information here: coding URL Loading.

Using tutorial application
When application initializes, three .wav files with audio data are immediately loaded.1.
When files are loaded, corresponding Play buttons will be enabled.

Figure 1: Application with all files loaded

2.

Clicking one of Play buttons will start playback of sound from equivalent .wav file. Sound will be played once.3.

Figure 2: Application playing sound
Playback is stopped, when Pause or Stop button is pressed. Play button will be enabled again. Pressing it will resume
playing or start from the beginning.

Figure 3: Playing was paused

4.

Playing multiple sounds simultaneously.5.

Problems with loading files
Figure 4: Two sounds are being played simultaneously. Third sound is stopped.

An error occurred: Could not read file and Play button is not enabled

Figure 5: Could not read file error
The file doesn’t exist or can’t be opened. Check if the file is placed in sounds folder in your widget directory and is granted
permission to be read. Then refresh application to reload it.

1.

An error occurred: Error in reading file and Play button is not enabled2.

Creating your own application
Loading files

Note

The pp::URLLoader serves mainly for loading remote resources, but we can use it also for
loading assets from widget directory. When doing this, you need to directly specify needed
file path from your widget directory:

// set file to download
url_ = "./sounds/" + varMessage.AsString() + ".wav";

Following figure shows how browser and PNaCl module communicate when loading requested file:

Figure 6: Error in reading file error
The file header is malformed and WAVE file couldn’t be interpreted. Correct it and refresh application to reload it.

Figure 7: Communication between browser and PNaCl module during loading file
As shown on Figure 7: Communication between browser and PNaCl module during loading file we need to implement two

callbacks:

When full file was read or an error occurred, fileReadCompleted() function is called. This function starts WAVE interpreting
procedure.

Reading WAVE header

The Microsoft’s RIFF specification contains the WAVE file format. File starts with a header followed by a sequence of
samples formatted according to data in the header. The standard WAVE file format is as follows:

Figure 8: WAVE format
From this format we will extract a header with fields of appropriate size:

first will start reading procedure,
second, called when data was read, should be created as optional, because when data is available (here we don’t need to
download it from remote point, so it is available) ReadResponseBody() may return read data synchronously.

struct FileHeader
{
 char chunkID[4];
 int32_t chunkSize;
 char format[4];

 char subchunk1ID[4];
 int32_t subchunk1Size;
 int16_t audioFormat;
 int16_t numChannels;
 int32_t sampleRate;
 int32_t byteRate;
 int16_t blockAlign;
 int16_t bitsPerSample;

 char subchunk2ID[4];
 int32_t subchunk2Size;
};

Now we should check whether the header in file is correct.

if (std::string(header_->chunkID, 4) != "RIFF" ||
 std::string(header_->format, 4) != "WAVE" ||
 std::string(header_->subchunk1ID, 4) != "fmt " ||
 std::string(header_->subchunk2ID, 4) != "data" ||
 header_->audioFormat != 1 || // without compression
 header_->bitsPerSample != 16 ||
 header_->chunkSize != 4 + (8 + header_->subchunk1Size) + (8 + header_->subchunk2Size)||
 (header_->numChannels != 1 && header_->numChannels != 2)) // supporting only mono and stereo sound

Playing sounds

Once sound is being played, browser continually sends request to fill audio buffer. PNaCl supports stereo sound. This means
that we have to provide two samples (left and right) for every sample to play.

Mixing sounds is not supported by pp::Audio interface. To achieve multiple sounds plying simultaneously mixing technique
has to be implemented by application. This tutorial provides simple mixer that sums up samples from all playing sounds.
Volumes of the sounds are normalized according to number of playing sounds.

For mono sound we just rewrite one sample many times to output buffer.
// for mono sound each sample is passed to both channels
audioDemoInstance->safeAdd(buff[i*2], (int16_t)instance.sampleData[instance.sampleDataOffset] * volume);
audioDemoInstance->safeAdd(buff[i*2+1], (int16_t)instance.sampleData[instance.sampleDataOffset] * volume);
instance.sampleDataOffset++;

For stereo sound each sample is used once.

Check if chunk names and format have appropriate value for WAVE file.1.
Check if file is not compressed.2.
Check if bits per sample rate is appropriate.3.
Check if chunk sizes are correct.

Important

Remember that chunk size value does not include chunk ID and size fields.

4.

Check if number of channels is lesser or equals 2 - PNaCl supports only stereo sound.5.

// for stereo sound samples are written successively to all channels
audioDemoInstance->safeAdd(buff[2*i], (int16_t)instance.sampleData[instance.sampleDataOffset] * volume);
instance.sampleDataOffset++;
audioDemoInstance->safeAdd(buff[2*i+1], (int16_t)instance.sampleData[instance.sampleDataOffset] * volume);
instance.sampleDataOffset++;

Important

Always check before writing to buffer if its size is enough to write as much samples as
required.

Thread and real-time issues

As audio callback function is called from background application thread. This brings several problems:

Summing up, you should program the callback function very carefully. Calling some functions or doing much time-consuming
computations may result in hard to track down and debug audio dropouts.

Warning

StartPlayback() and StopPlayback() are asynchronous RPCs. That means, the playback
may not be started or stopped immediately after calling these functions. If you need it to be
precise with another application actions, you have to synchronize it manually.

Data access

Data can be accessed from both audio and main application threads. However, locks should not be used, as attempting to
acquire a lock may result in swapping out the thread and audio dropouts.

1.

PPAPI and CRT (C Run-Time) library calls

Using some functions form PPAPI or CRT library, such as malloc, gettimeofday, mutex, critical sections also swaps out the
callback function and shouldn’t be used inside of it.

2.

Long computations

Another case when audio dropouts may occur is when callback computation time does not meet real-time conditions.

3.

	Audio in PNaCl application
	Prerequisites
	Introduction
	Interfaces description
	The pp::Audio interface
	The pp::URLLoader interface

	Using tutorial application
	Problems with loading files

	Creating your own application
	Loading files
	Reading WAVE header

	Playing sounds
	Thread and real-time issues

