
Tips for optimizing OpenGL ES 2.0 widgets
on PNaCl

Published 2014-10-28 | (Compatible with SDK 4.5,5.0,5.1 and 2013,2014 models)

This article describes some tips and possible methods for optimizing OpenGL ES 2.0
applications running on PNaCl platform.

Contents

It is hard to create OpenGL ES game but it is even harder to optimize it. This text introduces a couple of tricks that can make
this hard task a little easier. It is obvious that there is no all-in-one way to do it. Concrete optimizations will always depend on
particular application and developer. But for sure we can show some tips forming a starting point for this rough path.
This article is designed for developers who have experience with PNaCl and OpenGL ES 2.0 and want to benefit the most
from them. This is neither Native Client, nor OpenGL ES 2.0 tutorial so it is assumed that reader knows at least basics of the
mentioned technologies. If you are not familiar with them, please refer to the Related Documents. It is strongly recommended
to read https://developers.google.com/native-client/dev/devguide/coding/3D-graphics, Native Client 3D Graphics
Developer's Guide. Take especially a particular look at the last section named Tips and Best Practices.

Developer's Guide
Here you will find tips for optimizing your OpenGL ES 2.0 application on the Native Client platform.

Usage of glBufferData and glBufferSubData

First of all, examine why you want to update VBO manually. Many common operations can be performed using vertex
shaders. These are some examples: translation, rotation, scaling of meshes, skeletal animation, morphing, displacement
mapping. If you do not have serious reason to update VBO, just do not do it, use vertex shader instead.
If you really have to update buffers' data, do it only if they were changed. Never treat calling glBufferData and
glBufferSubData like a harmless habit. Sending updated data through the command buffer always takes time. Try to
minimize amount of calls of these functions.

Do not mix glDrawArrays with glBufferData or glBufferSubData

It is tempting to update the buffer just before it is used in drawing out of convenience. If one succumbs to this temptation, one
creates the following OpenGL calls sequence:
glBufferSubData
glDrawArrays
glBufferSubData
glDrawArrays
glBufferSubData
glDrawArrays
But why is it a temptation? Update of the buffer can take much time. If draw call is issued, GPU is stalled waiting for buffer
update. It simply beats the application performance. It is really slow - rendering can take up to 100 times more than under
normal circumstances. To avoid this, use the following call sequence:

Developer's Guide

Summary

Related Documents



glBufferSubData
glBufferSubData
glBufferSubData
//...as much other code as possible...
glDrawArrays
glDrawArrays
glDrawArrays
 

Textures

glBindTexture binds texture to the current target and texture slot. Texture remains bound until you unbind it or change it for this
particular target and slot. So there is no need to bind the same texture again and again before each draw call if the texture
remains the same.
glTexParameteri is used to set parameters of textures like filtering, wrapping etc. You set them up just right after texture is
loaded. But do those parameters need to be reset every time the texture is bound? The answer is no, don't repeat
parameters setting after subsequent glBindTexture calls for this texture.
State changes issued by glBindTexture are always tied with overhead. To minimize their amount you can use a technique
called texture atlas. This is a combination of multiple textures put together in one texture, so it can be used to render multiple
objects. Texture resource does not change, so you save time on a few glBindTexture calls.
Use texture compression. In the Native Client on Smart TV there is only one texture compression format available: ETC1.
Unfortunately it has several limitations: compression ratio is 1:4 and it stores only RGB channels (so it is hard to use it with
blended materials). It is better than nothing though, as it improves memory allocation and bandwidth, which are limited
resources in Smart TV.

Buffers

You can also save performance by rendering the same buffer a couple of times. Given the fact that it is an expensive
operation, glBindBuffer does not need to be recalled after draw call. If you have game objects using the same buffer to
render, group them together to minimize glBindBuffer calls. Here are some examples: rectangle representing 2D objects,
similar AI agents, ambient objects.
Use GL_STATIC_DRAW with glBufferData (if you don't intend to change the buffer frequently) where possible. This tells GPU
to optimize allocation of this buffer, because you promise not to modify it often, or at all. Remember that modification of a
static buffer costs more than a dynamic one. Moreover, do not mix the static data with the dynamic data.

Shaders

Change shading program as seldom as possible (by glUseProgram function). You can group renderable objects together by
shading programs they use.
If you don't change the shading program you don't also need to call glEnableVertexAttribArray function again. If both rendered
buffer and program are not changed, glVertexAttribPointer function does not need to be recalled as well.

State changes

Try to organize your rendering algorithm to minimize state changes issued by glEnable and glDisable functions. As
mentioned before, state changes are always tied with overhead.
You may implement OpenGL state tracing mechanism which saves current state of overall state and shaders, textures and
buffers states and prevents to unnecessarily call OpenGL functions. It is advisable for performance of your application to find
and eliminate duplicating function calls either by special mechanism or manual profiling.

Stalling calls

glReadPixels reads a block of pixels from the framebuffer. By all means try not to use this function. It results in waiting while
the GPU is finishing rendering. It also has a significant command buffer overhead. Finally you get powerful performance
blocker.
glCopyTexImage2D copies framebuffer's pixels into a 2D texture image. Use FBOs instead of this call.
glTexSubImage2D specifies a 2D texture subimage. Normally, this is not a stalling call, unless you call it on FBO, so use it
carefully.

glFlush and glFinish

In the Native Client platform OpenGL commands are not executed in the same process as your application is working on.



Actual OpenGL calls are issued in the special process called GPU Process, because of security reasons (GPU Process
checks their validity first). OpenGL commands are batched up in a buffer and sent to GPU Process through RPC
mechanism. This command buffer needs to be flushed from time to time. In most cases flush is issued by the Native Client in
some OpenGL ES function calls implicitly. But you can also issue flush explicitly. glFlush issues asynchronous flush of the
command buffer toward GPU Process. glFinish issues synchronous flush of the command buffer and waits for all buffered
OpenGL commands to be executed in GPU Process.
The problem with automatic flushes is their unpredictability. Flush can occur during hard processing in a random OpenGL
call, so you may observe temporary performance drop. To prevent this drops force command buffer flush with glFlush or
glFinish before hard processing. In order to choose how often issue a flush in your code, you will probably need some testing
and profiling.

Blending

Because of internal structure and implementation alpha blending in Smart TV's Native Client platform is particularly
expensive. Therefore, you need to pay special attention to alpha blending optimization. First of all, keep alpha blending
switched off when it is not currently used. Secondly, avoid rendering big alpha blended rectangles, especially fullscreen
rectangles. If you need to create HUD in your game, try to divide HUD geometry to draw as small rectangles as possible - just
to avoid big empty spaces (i.e. rendered with 0 alpha value). The third and the most interesting technique is to sort rendered
objects: firstly all objects without alpha blending, secondly objects rendered by fragment shader with discard inside and lastly
alpha blended objects. This enables early Z clipping - expensive objects with alpha blending will not be rendered at all if they
are not visible, but they will be clipped by Z buffer.

Sort

You can benefit from aforementioned tips by implementing an algorithm that sorts calls to OpenGL ES 2.0 to minimize their
amount. If your game or application is large and complicated enough, it is recommended to create sorting algorithm that
groups usage of shaders, textures and buffers together. The concrete sorting algorithm depends on your needs. Maybe your
application's problem is a frequent change of shaders which you have only few. Maybe your 2D game has only one buffer and
one shader to render rectangles and the only thing you need to do is group same textures together. Below there is presented
some pseudocode of a possible algorithm:

void Render()
{
    for (int i = 0; i < renderables.size(); i++)
        renderables[i]->CalculatePriority(); //ex. programIndex << 32 | textureIndex << 16 | bufferIndex, but it depends on yo
ur needs
    renderables.sort();
    
    for (int i = 0; i < renderables.size(); i++)
    {
        if (currentProgram != renderables[i]->GetProgram())
            ChangeProgram(renderables[i]->GetProgram()); //appropriate calls to OpenGL ES
        
        if (currentTexture != renderables[i]->GetTexture())
            ChangeTexture(renderables[i]->GetTexture()); //appropriate calls to OpenGL ES
        
        if (currentBuffer != renderables[i]->GetBuffer())
            ChangeBuffer(renderables[i]->GetBuffer()); //appropriate calls to OpenGL ES

        Render(renderables[i]);
    }
}
        

 

Batch, batch, batch!

Batch static renderable objects when possible. Batching means grouping different logical objects into one VBO. Remember,
that those objects really need to be static. Updating batched dynamic objects requires updating whole or part of VBO, which



becomes unprofitable, because of sending potentially large data through the command buffer. Below there is a batching
example: you have a couple of quads that differ only in transformation matrix. It is faster to create one VBO with all objects
and issue one draw call, than to have VBO with one quad only, send transformation to shader for each quad and issue as
many draw calls. First of all, you benefit from issuing only one draw call. Moreover, in the first case you send vertex buffer only
once, while in the second each frame you send matrices multiple times depending on objects' amount. Thanks to this
technique you minimize drivers' and command buffer's overhead of each not issued call.

Other

Reduce resolution of a widget. If you really do not have to use 1080p resolution, use, preferably, 720p resolution.
Do not clear color buffer if you do not need to (e.g. you have a skybox).
Use shader precision qualifier wisely: when in doubt, use highp; use lowp for colors; use highp for most vertex operations;
use mediump for normals and vectors used in lighting calculations.
Cull invisible geometry by using glCullFace.

Summary
To sum up, the above tips are written to help you optimize your Native Client OpenGL ES 2.0 application. Resources (CPU,
GPU, memory) on the TV board are limited, therefore try to minimize OpenGL calls as much as possible. This will save these
precious resources for other important calculations your application needs to perform and gain better performance. Feel free
to refer to the below links to find more information on PNaCl and OpenGL ES 2.0.

Related Documents
Native Client related

OpenGL ES related

Getting started with NaCl
How to create sample PNaCl application
https://developers.google.com/native-client/overview - Native Client Technical Overview

http://www.khronos.org/opengles/sdk/docs/man/ - OpenGL ES 2.0 Reference Pages
https://developers.google.com/native-client/dev/devguide/coding/3D-graphics - Native Client 3D Graphics
Developer's Guide


	Tips for optimizing OpenGL ES 2.0 widgets on PNaCl
	Developer's Guide
	Summary
	Related Documents


