
Creating a Microphone Application

Published 2014-10-27 | (Compatible with SDK 3.5,4.5,5.0,5.1 and 2012,2013,2014 models)

This tutorial describes the use of microphone class of the External Interworking API. This
class is needed to create various kinds of TV applications, like karaoke using different
types of microphones. The application being developed in this tutorial demonstrates the
development of TV application using microphone. The application connects to a USB
microphone device and gets data from the device through TV platform.

Contents

Programming of applications using microphones is mostly based on the External Interworking API of the Hardware API.

Prerequisites
To create applications that run on a TV screen, you need:

Environment
Use Samsung Smart TV SDK to create the application. Emulator provided along with SDK could be used to debug and test
the application before deploying it onto TV. Refer Testing Your Application on a TV. Note that applications may perform
better on the TV than on the emulator.

You can find general instructions for creating applications in Implementing Your Application Code.

Source Files
Note

The files needed for the sample application are here.

The tutorial Microphone Application is located under Tutorial_Microphone. Source files in directory are explained in the table:

Prerequisites

Environment

Source Files

VirtualBox (SDK 4.5)

Microphone Application
Starting the Microphone Application
Using the Microphone

Samsung TV connected to the Internet
SDK (Samsung Smart TV SDK is recommended) or a text editor for creating HTML, JavaScript and CSS files

Directory Description

css Contains the StyleSheet file TutorialMicrophone.css

resource Contains the image folder which contains background.jpg

https://dr1stk14alc8x.cloudfront.net/_downloads/tut00011_microphone_tutorial.zip

VirtualBox (SDK 4.5)
USB Mic’s pcm data are not delivered correctly on the VirtualBox. If you want to hear the voice, you should record it as
mic.pcm before run the SDK. And copy the file to Apps directory.

Note

E.g.: arecord –f S16_LE –r 48000 –c 1 > mic.pcm (linux record example)

Microphone Application
Starting the Microphone Application

To start the microphone application,

js Contains the JavaScript file TutorialMicrophone.js which does the following:

Directory Description

initializes codes
registers events
key handling
displays the results

Select the Open App on the right-bottom menu (refer to the figure below).

Figure: Selecting the application

1.

Select Microphone_Tutorial. If the following display appears on the emulator, then it means that application has started
successfully:

2.

Using the Microphone

Following sections explain how to use the connected microphone.

Figure: Microphone application started
Connect an usb microphone to TV. You can see the connected microphone list on the left side.

Figure: Figure: connected Microphone

3.

If you want to enable and play the connected microphone, just press Enter key of the remote control. After pressing enter
key, you can see the configure screen enabled as below figure.

1.

Figure: Control the volume of microphone
Please just press Return key of remote control, if you want to stop and disable the connected microphone.
If you want to increase the mic volume, press |>> key of the remote control. Current volume level can be seen as in below
figure.

Figure: Control the volume of microphone
If you want to decrease the mic volume, press <<| key of the remote control.

2.

The reverb effect of the voice can be applied by pressing A(RED) key of the remote control or Enter key of remote control
on the Reveb menu as in the below figure.

Note

Currently, SDK doesn’t support real reverb effect, but just displays the message as below.

3.

Getting an Available Microphone

If microphones are connected, window.webapis.microphone.getMicrophones() function will be return each Microphone class
object of connected microphones.

Figure: Control the reverb effect
Cancel the reverb effect by pressing A(RED) key or Enter key of the remote control again. This result in display change as
below follow. (only message printed with SDK)
You can set the filter effect by selecting Filter menu. Below figure shows the display change on screen:

Figure: Turn on the Filter Effect

Note

This feature is only enabled on the supported models. Please check it with
getSupportedEffects function before using it.

You can set the filter value by pressing left / right key key of the remote control on each items..

4.

var microphone = window.webapis.microphone || {};

Main.keyDown = function () {
 var keyCode = event.keyCode;

 switch (keyCode) {
 case gTVKey.KEY_ENTER:
 microphone.getMicrophones(Main.onMicrophoneObtained);
 break;
 ...
 }
}

Main.onMicrophoneObtained = function (mics) {
 var enabledEffect;

 if (mics.length > 0) {
 if (mics[0] != null) {
 micDevice = mics[0];
 if (micDevice.enableDevice(microphone.MICROPHONE_FORMAT_SIGNED_16BIT_LITTLE_ENDIAN,
 microphone.MICROPHONE_FRAMERATE_48000) == false) {
 return;
 }

 if (micDevice.play() == true) {
 document.getElementById("enable").innerHTML = "Your microphone ON.";
 }
 else {
 document.getElementById("enable").innerHTML = "Can't be ON, Error happened!";
 return;
 }

 ...
 }
 } else {
 ...
 }
}

Registering a Callback Function for a Device Connection Event

To receive a device connection event, register a callback function with
window.webapis.microphone.registerManagerCallback() function. Once the callback registration is done, callback functions
are called at connecting or disconnecting a microphone. The callback function can get
window.webapis.microphone.ManagerEvent class object including event type and microphone name as an input parameter.

Function Description

getMicrophones Get Microphones which are connected to TV. When it called for the first time, it will initialize all the internal modules. Even though
several microphones instances are returned, only one microphone can be used. So, get only one microphone instance from this
function

Function Description

registerManagerCallback Register callback function to get the event about CONNECT/DISCONNECT

Main.onLoad = function () {
 var nDevNum = 0;

 gWidgetAPI = new Common.API.Widget();
 // Create Common module
 gTVKey = new Common.API.TVKeyValue();
 gWidgetAPI.sendReadyEvent();
 // Send ready message to Application Manager

 microphone.registerManagerCallback(Main.onDeviceStatusChange);
 ...
}

Main.onDeviceStatusChange = function (sParam) {
 switch (sParam.eventType) {
 case microphone.MGR_EVENT_DEV_DISCONNECT:
 if (micDevice != null) {
 if (micDevice.getUniqueID() == sParam.deviceUID) {
 alert("Your microphone is disconnected right now. ");
 micDevice = null;
 }
 }
 ...
 break;
 default:
 break;
 }

 return;
}

Enable or Disable the Microphone

Microphone can be enabled to use, by calling Microphone.enableDevice (unsigned short format, unsigned short framerate)
function. Once the call is made, the microphone is ready to use. So, this function should be called before calling
Microphone.play() function. Call Microphone.disableDevice(), if microphone is no longer needed and need to be disabled.

Function Description

enableDevice Make the microphone device enable.

disableDevice Make the microphone device disable.

Main.onMicrophoneObtained = function (mics) {
 var enabledEffect;

 if (mics.length > 0) {
 if (mics[0] != null) {
 micDevice = mics[0];
 if (micDevice.enableDevice(microphone.MICROPHONE_FORMAT_SIGNED_16BIT_LITTLE_ENDIAN,
 microphone.MICROPHONE_FRAMERATE_48000) == false) {
 return;
 }

 if (micDevice.play() == true) {
 document.getElementById("enable").innerHTML = "Your microphone ON.";
 } else {
 return;
 }

 micVolume = micDevice.getVolumeLevel();

 alert("Currently,mic volume is " + micVolume + ".");

 ...
 }
 }
 ...
}

Play or Stop the Microphone

To start hearing voice from speaker, call the Microphone.play() function. Call Microphone.stop() to stop hearing voice from
speakers.

Function Description

play Start to send the voice from the microphone to the TV speaker

stop Stop sending the voice from the microphone to the TV speaker.

Main.keyDown = function () {
 var keyCode = event.keyCode;

 switch (keyCode) {
 case gTVKey.KEY_RED: {
 if (micDevice != null) {
 if (micDevice.play() == true) {
 document.getElementById("enable").innerHTML = "Your microphone ON.";
 } else {
 document.getElementById("enable").innerHTML = "Can't be ON, Error happened!";
 }
 }
 break;
 }
 case gTVKey.KEY_BLUE: {
 if (micDevice != null) {
 if (micDevice.stop() == true) {
 document.getElementById("enable").innerHTML = "Your microphone OFF.";
 } else {
 document.getElementById("enable").innerHTML = "Can't be OFF, Error happened!";
 }
 }
 break;
 }

 }
}

Set or get volume level

If the microphone supports the volume control, you can set or get the volume of the microphone.

Main.keyDown = function () {
 var keyCode = event.keyCode;

 switch (keyCode) {
 case gTVKey.KEY_LEFT: {
 if (micDevice != null) {
 micVolume--;
 if (micVolume < 0) {
 micVolume = 0;
 }
 micDevice.setVolumeLevel(micVolume);
 alert("__volume DOWN . level = " + micVolume + "___");
 document.getElementById("volume").innerHTML = "volume down: " + micVolume;
 }
 break;
 }
 case gTVKey.KEY_RIGHT: {
 if (micDevice != null) {
 micVolume++;
 if (micVolume > 100) {

Function Description

setVolumeLevel Sets the current volume level of microphone

getVolumeLevel Gets the current volume level of microphone.

 if (micVolume > 100) {
 micVolume = 100;
 }
 micDevice.setVolumeLevel(micVolume);
 }
 break;
 }
 }
}

Main.onMicrophoneObtained = function (mics) {
 var enabledEffect;

 if (mics.length > 0) {
 if (mics[0] != null) {
 micDevice = mics[0];
 if (micDevice.enableDevice(microphone.MICROPHONE_FORMAT_SIGNED_16BIT_LITTLE_ENDIAN,
 microphone.MICROPHONE_FRAMERATE_48000) == false) {
 return;
 }

 if (micDevice.play() == true) {
 document.getElementById("enable").innerHTML = "Your microphone ON.";
 } else {
 return;
 }

 micVolume = micDevice.getVolumeLevel();

 alert("Currently,mic volume is " + micVolume + ".");

 ...
 }
 }
 ...
}

Set or get effects

A few models of TVs support several effects. To use those effects, effects functions such as getSupportedEffects,
getEnabledEffects, setEffect are provided.

Function Description

setEffect Set effect ON/OFF. By default, all effects are Off. Currently, Reverb and Filter effect is supported by TV.

getSupportedEffects Get the all kind of effect type that TV can support. If you want to use some effect, you are supposed to use setEffect function.
Supported effects should be queried by calling getSupportedEffects() before calling setEffect(). For example, some TV model may
support reverb effect, while some other TV model may not support reverb effect.

getEnabledEffects Get the all effects that is now enabled.

Main.keyDown = function () {
 var keyCode = event.keyCode;

 switch (keyCode) {
 ...
 case gTVKey.KEY_GREEN:
 if (micDevice != null) {
 if (supportedEffects & microphone.MICROPHONE_EFFECT_REVERB) {
 micDevice.setEffect(microphone.MICROPHONE_EFFECT_REVERB, true);
 document.getElementById("reverb").innerHTML = "Reverb effect ON.";
 }
 }
 break;
 case gTVKey.KEY_YELLOW:
 if (micDevice != null) {
 if (supportedEffects & microphone.MICROPHONE_EFFECT_REVERB) {
 micDevice.setEffect(microphone.MICROPHONE_EFFECT_REVERB, false);
 document.getElementById("reverb").innerHTML = "Reverb effect OFF.";
 }
 }
 break;
 }
 ...
}

Main.onMicrophoneObtained = function (mics) {
 var enabledEffect;

 if (mics.length > 0) {
 if (mics[0] != null) {
 micDevice = mics[0];
 if (micDevice.enableDevice(microphone.MICROPHONE_FORMAT_SIGNED_16BIT_LITTLE_ENDIAN, \
 microphone.MICROPHONE_FRAMERATE_48000) == false) {
 return;
 }

 if (micDevice.play() == true) {
 document.getElementById("enable").innerHTML = "Your microphone ON.";
 } else {
 document.getElementById("enable").innerHTML = "Can't be ON, Error happened!";
 return;
 }

 supportedEffects = micDevice.getSupportedEffects();

 enabledEffect = micDevice.getEnabledEffects();
 if (enabledEffect != 0) {
 alert("Currently, sound effects[" + enabledEffect + "] are on. ");
 }
 }
 }
 ...
}

	Creating a Microphone Application
	Prerequisites
	Environment
	Source Files
	VirtualBox (SDK 4.5)
	Microphone Application
	Starting the Microphone Application
	Using the Microphone
	Getting an Available Microphone
	Registering a Callback Function for a Device Connection Event
	Enable or Disable the Microphone
	Play or Stop the Microphone
	Set or get volume level
	Set or get effects

